Precise prediction for Higgs production via gluon fusion through many heavy quarks

Elisabetta Furlan ETH Zürich

Brookhaven Forum 2010

A Space-Time Odyssey

May 26-28, 2010 • Brookhaven National Laboratory

Motivation

- gluon fusion is the main mechanism for Higgs production at hadron colliders
- * it is sensitive to any coloured particle that couples to the Higgs, e.g. the top
- * the Higgs sector is untested

this channel is very sensitive to new physics effects

- * the Standard Model Higgs sector is likely to be wrong
- extensions of the SM require new particles which may contribute to gluon fusion

Motivation

- * Assume that we find...
 - a relatively light Higgs with a cross section much different than σ_{SM} ($\sigma\sim0.35\,\sigma_{SM}$, $\sigma\sim0.80\,\sigma_{SM}$?)
 - and/or some new heavy particles
 - > lot of model-building activity ...
 - ... and of perturbative QCD calculations of the gluon fusion cross section for these models

Gluon fusion in the SM

- * it is known very precisely...
- * ... but it required tough calculations

Harlander, Kilgore;
Anastasiou, Melnikov;
Ravindran, Smith, van Neerven

$$\left(\frac{\Delta\sigma}{\sigma}\right)^{\exp} \sim \pm 10\%$$
 , $\left(\frac{\Delta\sigma}{\sigma}\right)_{SM}^{NNLO} \sim \pm 10\%$

* ... and integrating out the top quark (HQET)

(Chetyrkin, Kniehl, Steinhauser)

Gluon fusion in BSM

- * Only very recent NNLO calculations in some BSM scenarios
 - scalar octects (Boughezal, Petriello)
 - fourth generation (Anastasoiu, Boughezal, Furlan)
- * Why?

The low-energy theory is usually the same as in SM HQET, but the matching calculation at NNLO is much more complicated:

- * number of diagrams
- * renormalization
- * dependence on multiple mass scales

Separating new physics

- * experiments (LEP, Tevatron, ..) indicate that new particles must be heavy, while the Higgs is light
- * this allows for an effective-theory approach:

$$\mathcal{L}_{eff} = -\frac{\alpha_s}{4v} C H G^a_{\mu\nu} G^{a\mu\nu}$$

depends on the specific model

QCD only!

> factorization of QCD and NP effects

Method

expansion by subgraphs (Chetyrkin; Gorishny; V. A. Smirnov) + small momentum expansion (Fleischer, Tarasov):

$$=\frac{\alpha_s}{\pi}C_1\cdot \frac{\alpha_s}{\alpha_s}C_1\cdot \frac{\alpha_s}{\alpha_s}C_$$

Method

expansion by subgraphs (Chetyrkin; Gorishny; V. A. Smirnov) + small momentum expansion (Fleischer, Tarasov):

Technical challenges

- * Large number of Feynman diagrams \sim 500 in the SM, \sim 4000 in MSSM, \sim 6000 in composite Higgs, ...
- * Apply costly differentiations for Taylor expansion
- * Reduce a large number ($^{\sim}10^{5}$) of integrals to master integrals
 - we wrote our own routines in
 - + QGRAF (Nogueira)
 - + Mathematica
 - + FORM (Vermaseren)
 - + AIR (Anastasiou, Lazopoulos)
 - same methods for SM and BSM Wilson coefficients

Technical challenges

- * Evaluate the master integrals
 - much more difficult than in the SM (many mass scales)
 - in many cases, impossible with traditional analytic methods -> sector decomposition

Hepp; Penner, Roth; Binoth, Heinrich; Anastasiou, Melnikov, Petriello; Anastasiou, Beerli, Paleo; Lazopoulos, Melnikov, Petriello

in collaboration with C. Anastasiou and R. Boughezal

* the two mass scales appear together at NNLO for the first time:

- can use the same routines as for the SM calculation
- master integrals now contain up to two, different, massive propagators

$$C_3^{mixed} \sim \#_1 \left(\begin{array}{c} m_1 \\ m_2 \\ \end{array} \right) + \#_2 \left(\begin{array}{c} m_2 \\ \end{array} \right) \right)$$

$$C_3^{mixed} \sim \#_1 \left(\begin{array}{c} m_2 \\ \\ \\ \end{array} \right) + \#_2 \left(\begin{array}{c} m_2 \\ \\ \end{array} \right) \right)$$

$$\frac{\alpha_s^3}{2m_1^4m_2^6} \left[\frac{\left(19m_1^6 + 5m_1^4m_2^2 - 5m_1^2m_2^4 - 19m_2^6\right)}{\epsilon} - \frac{1713m_1^8 + 476m_1^6m_2^2 - 1834m_1^4m_2^4 - 964m_1^2m_2^6 - 1023m_2^8}{36(m_1^2 - m_2^2)} \right]$$

Bekavac, Grozin, Seidel, Smirnov

* Contribution to the bare NNLO Wilson coefficient from two-quarks diagrams:

$$\begin{split} &-\left(\frac{\alpha_s^0 S_\epsilon}{\pi}\right)^{\!3}\!\!\left\{\frac{1}{16\epsilon^2} - \frac{1}{16\epsilon}\left[3\left(\log(m_1^0) + \log(m_2^0)\right) + \frac{89}{18}\right] \right.\\ &\left. + \frac{1}{2}\log(m_1^0)\log(m_2^0) + \frac{89}{96}\left[\log(m_1^0) + \log(m_2^0)\right] \right.\\ &\left. + \frac{5}{16}\left[\log^2(m_1^0) + \log^2(m_2^0)\right] + \frac{1051 + 27\pi^2}{1728} + \mathcal{O}(\epsilon)\right\} \end{split}$$

$$\mathbf{S}_{\epsilon} = \mathbf{e}^{-\epsilon \gamma_{\mathbf{E}}} \left(4\pi \right)^{\epsilon}$$

Next steps...

- * Decoupling of the heavy quarks:
 - heavy quarks give loop contributions to the self-energies and vertices

- absorb these contributions into decoupling constants (Chetyrkin, Kniehl, Steinhauser)
- * Renormalization

RESULT

* NNLO Wilson coefficient for an arbitrary number nh of heavy quarks:

$$\begin{split} \mathbf{C} &= -\frac{1}{3} \frac{\alpha_s'(\mu)}{\pi} \left\{ \mathbf{n_h} + \frac{11}{4} \frac{\alpha_s'(\mu)}{\pi} \mathbf{n_h} \\ &- \left(\frac{\alpha_s'(\mu)}{\pi} \right)^2 \left[\frac{77}{576} \mathbf{n_h^2} - \frac{1877}{192} \mathbf{n_h} + \frac{19 L_m}{8} + \mathbf{n_l} \left(\frac{67}{96} \mathbf{n_h} + \frac{2 L_m}{3} \right) \right] \right\} \end{split}$$

$$\mathbf{L_m} = \sum_{\mathbf{q}=1}^{\mathbf{n_h}} \log \left(\frac{\mathbf{m_q}(\mu)}{\mu} \right)$$

Application: 4th generation

- our result allows to put reliable experimental bounds on the Higgs boson mass in this model
- * we include:
 - the exact LO and NLO amplitude for the heavy quarks and for the bottom quark

(Wilczek; Ellis et al.; Georgi et al.)
(Spira et al.; Anastasiou et al.)

our NNLO Wilson coefficient in the heavy-quark approximation

Higgs production cross-section

- the two-loop electroweak corrections:

(Aglietti et al.)

- the three-loop mixed QCD-electroweak corrections:

(Anastasiou et al.)

and the total cross-section is..

Higgs production cross-section

 $m_B = 400 \text{ GeV}$, $m_T \simeq m_B + 50 \text{ GeV} + 10 \text{ GeV} \text{ Log}(m_H/115 \text{ GeV})$

Higgs production cross-section

- the NNLO cross section is 20-30% higher than the NLO cross-section
- the enhancement over the SM production cross section varies between 9 and 7, depending on m_H
- the theory uncertainty on the NLO cross-section is much higher than the experimental uncertainty
- * this result allows to put accurate constraints on the mass of the Higgs boson in the four-generation SM

Exclusion limits on mh

(CDF & DO)

- exclude

131 GeV \lesssim mH \lesssim 204 GeV

Conclusions

- * the Higgs boson is likely to come with some new physics
- * many viable BSM theories exist, and many need to introduce new, coloured particles
- * they can significantly affect the gluon-fusion cross section
- * effective theory disentangles new physics from QCD
- * we have automatised the matching procedure for BSM models through NNLO

Conclusions

- ready for high-precision predictions for Higgs boson cross-section in extensions of the SM
- * first application: Higgs production cross-section in the four-generation SM
- * this result can be combined with experimental results to put reliable bounds on the Higgs boson mass in the four-generation model

